FORMULATION AND EVALUATION OF CARICA PAPAYA LEAVES AQUEOUS EXTRACT CHEWABLE TABLETS

G. Lakshmi Devi*,1, K. S. Murali Krishna1, Priyanka Mishra1, Sana Afreen1, Sravya Maddukuri1
1*Department of Pharmaceutics, Joginpally BR Pharmacy College, Chevella Road, Hyderabad, Telangana-500075, India.

ABSTRACT
The objective of the present study is to formulate and evaluate Carica papaya leaves aqueous extract chewable tablets. Carica papaya leaves aqueous extract exhibited potential activity against Dengue fever. Carica papaya leaves are a rich source of complex biochemical constitutes including flavonoids, glycosides, alkaloids, glutathione and glucosinolates that helps boost the number of platelets by stimulating bone marrow and it responsible for production of platelets. The direct compression method was used for the preparation of chewable tablets. Carica papaya chewable tablets were characterized by weight variation, hardness, friability, drug content uniformity, dissolution and short-term stability studies. These tablets are intended to disintegrate smoothly in the mouth at a moderate rate either with or without actual chewing, characteristically chewable tablets have a smooth texture upon disintegration, are pleasant taste. Geriatric and pediatric patients and travelling patients who may not have ready access to water are most need of easy swallowing dosage forms like chewable tablets. In this study the formulation In-vitro drug release studies revealed that the cumulative % drug release of Carica papaya chewable tablets was found to be 86.3%. The bulk density and tapped density of the formulation was found to be 0.588gm/ml and 0.800gm/ml respectively. The result of Carr’s compressibility index and Hausner’s ratio for the formulation shows fair flow properties.

KEYWORDS
Carica papaya leaves aqueous extract, Dengue fever, Platelet count, Chewable tablets and Direct compression method.

INTRODUCTION
Dengue, a viral disease transmitted by the bite of the Aedes mosquito. Dengue Hemorrhagic Fever (DHF) is a mosquito-borne infection which in recent decades has become a major international public health problem. Dengue is prevalent in tropical and sub-tropical regions around the world, predominantly in urban and semi-urban areas. It has
become a major public health problem. Today dengue fever affects most Asian countries and has become a leading cause of hospitalization and death among children in the region. One of the most problem of dengue is that there are no effective antiviral agents available to treat dengue complications. Up to date there is no specific treatment for dengue fever Ayurvedic literature reveals that papaya (Carica Papaya) leaf extract has haemostatic and other medicinal properties that could be utilized very much in treatment of dengue. A herbal medicine being investigated to control the mammoth problem of dengue is the extract of the leaves of the papaya plant, Carica papaya. There have been conflicting reports on the effectiveness of this extract in the treatment of dengue. In this article, we present the use of the papaya leaf extract for the treatment of dengue. Since from earlier days the papaya has been used for the treatment of several diseases. The papaya leaves, fruits and seeds has various beneficial effects and suggested for scientific studies. The papaya leaves extract plays a major role to treat digestive disorders. The extracts from fruits and seeds have bactericidal properties. Papaya fruit juice and leaf aqueous extract are also produce beneficial effects in various diseases like anticancer, antioxidative, anti-inflammatory, anti-bacterial, nephroprotective, hepatoprotective, hypoglycemic and hypolipidemic effects, and anti-sickling effect in sickle cell disease. C. papaya L. leaf extracts inhibits heat-induced and hypotonicity-induced hemolysis of erythrocytes present in both healthy individuals and individuals with dengue infection. The extracts are likely to possess membrane-stabilizing properties and protect blood cells against stress-induced destruction. Papaya leaves contains flavonoids and other phenolic compounds, these constituents mainly useful in preventing platelet lysis, this property might be helpful in patients with dengue infection.

MATERIAL AND METHODS

Materials
Carica papaya aqueous extract was extracted in laboratory, Tri basic calcium phosphate, sucrose, talc, magnesium Stearate and vanilla powder purchased from UV Scientifics, Hyderabad-500074.

Extraction process
Fresh leaves of Carica papaya were collected during July. Fresh leaves were collected, washed with water and wiped with a clean cloth to remove dust. Leaves were shade dried at room temperature and powdered using a mixer grinder. 30 g of powdered plant material was extracted with 300 ml water in an Ultrasonicator at 37°C for 2 h. The extract thus obtained was concentrated and evaporated to dryness on a water bath maintaining the temperature at 70°C.

Determination of λ_{max}
Concentration of 120μg/mL of Carica papaya aqueous extract dissolved in phosphate buffer pH 7.4 separately scanned over a wavelength range of 200-800nm and the wave length found to be 238nm.

Standard calibration curve of Carica papaya aqueous extract by UV
The UV absorbance of Carica papaya aqueous extract standard solution in the range of 2 to 10μg/mL in phosphate buffer pH 7.4 separately scanned over a wavelength range of 200-800nm showed linearity at λ_{max} 238 nm. The linearity was plotted for absorbance against concentration with R2 value 0.999 for phosphate buffer.

Preparation of Standard Calibration Curve of Carica papaya Aqueous Extract
10 mg of Carica papaya aqueous extract was dissolved in 10 ml of phosphate buffer pH 7.4 separately to give a stock solution of 1000μg/mL. From the stock solution, the standard solutions with concentrations ranging from 2-10μg/mL were obtained. The absorbance of these solutions was observed at 238 nm. These absorbance values were used to prepare the standard plot.

PREPARATION OF CHEWABLE TABLETS

Method
All powder compounds were accurately weighted, passed through a standard sieve (sieve no 80) and thoroughly blended for 5 min. After being mixed powders were evaluated for bulk density and tapped density, compressibility index (Carr’s index), Hausner’s ratio and angle of repose. Chewable
tablets were prepared by direct compression using rotary tablet compression machine.

Pre-Compression Studies

Physical appearance
The physical appearance of the tablet was studied visually in shape, colour, texture and odour.

Angle of repose
It is the maximum angle that can be obtained between the freestanding surface of powder heap and the horizontal plane. It was determined by using fixed funnel method. Specified amount of powder drug was transferred to the funnel keeping the orifice of the funnel blocked by the thumb. When the powder was cleared from funnel then measured its angle of repose and measured in θ.

\[
\text{Angle of repose } \theta = \tan^{-1}\left(\frac{h}{r}\right)
\]

Bulk density
Bulk density is defined as the mass of a powder divided by the bulk volume.

\[
\text{Bulk density } (b) = \frac{M}{V_b} \quad (\text{Where, } M \text{ is the mass of the sample, } V_b \text{- bulk volume})
\]

Tapped density
Tapped density is defined as ratio of total mass of the powder to the tapped volume of powder

\[
\text{Tapped density } (t) = \frac{\text{weight of powder blend}}{\text{Minimum volume occupied by cylinder}}
\]

Carr's index
It was determined by using tapped density and bulk density of the powder mixture.

\[
\text{Carr's index} = \frac{\text{Tapped density}-\text{Bulk density}}{\text{Tapped Density}} \times 100
\]

Hausner’s ratio
It is an indirect index of ease of measuring of powder flow Lower Hausner’s ratio (<1.25) indicates better flow properties than higher ones (>1.25)

\[
\text{Hausner’s ratio} = \frac{\text{Tapped density}}{\text{Bulk density}}
\]

Post-Compression Studies Of Prepared Tablets
The tablets were evaluated for various parameters after consideration of pre-formulation to overcome errors during formulation preparation.

Thickness
The tablet thickness was calculated by Vernier callipers. Tablet was put in between two jaws vertically and measured thickness and expressed in mm.

Weight variation
Twenty tablets were selected randomly from each batch and weighed individually on electronic balance. The individual weighed is then compared with average weight for the weight variations. The weight variation test would be a satisfactory method of determining the drug content uniformity of tablets.

\[
\% \text{deviation} = \frac{\text{Individual weight}-\text{average weight}}{\text{Average weight}} \times 100
\]

Hardness
Hardness is a force required to break a tablet across the diameter. The hardness of a tablet is an indication of its strength. The tablet should be stable to mechanical stress during handling and transportation. The hardness was tested using Monsanto tester. For determination of hardness factor, the average of the six determinations was determined and reported. The force was measured in kilograms per centimeter square.

Friability
To evaluate the degree of friability of the tablets from each batch, ten tablets were randomly selected, dusted and weighed. The tablets were placed in a Roche friabilator and subjected to its tumbling action at 25 revolutions per minute for 4 minutes. Then after, the tablet were once again dusted and reweighed to determine the % loss of weight.

\[
\text{Friability} = \frac{\text{Weight of the tablet before test}-\text{weight of the tablet after test} \times 100}{\text{Weight of the tablet before test}}
\]

In vitro drug release
In vitro drug release studies were undertaken using USP apparatus 2 (paddle method). The dissolution medium was 900 ml phosphate buffer of pH 7.4 at 37 ± 0.5°C at a stirring rate of 75 rpm. During rotations, 5ml of sample was withdrawn at 5 min interval and replaced with fresh medium to maintain sink condition. Samples were filtered using Whatsman filter paper and taken absorbance in UV at 238 nm.

Stability studies
The formulated tablets were subjected to stability studies at 4°C ± 2°C and 25°C ± 2°C. The products...
RESULTS AND DISCUSSION
The chewable tablet was formulated by direct compression method. This technique was used for a tablet which minimizes processing steps and eliminated wetting and drying process. The physiochemical property shows satisfactory results by a tablet which are within the range of prescribed standards required for investigation of the present study. Tablets were examined on the basis of weight uniformity (Denver Instrument), friability (Roche friabilator), hardness (Monsanto hardness tester), and estimation of drug content (UV-Visible spectrophotometer) using calibration curve. The dissolution test was made in accordance with USP type II (LAB INDIA), 75rpm speed, at a temperature of 37°C, pH 7.4 phosphate buffer. Amount of drug release was measured in the intervals of 10, 20, 30, 40, 50, and 60 min and determined by UV-Visible Spectrophotometer (Model No: 2450) using calibration curve. All tests were made in accordance with the Indian Pharmacopeia and the United States Pharmacopeia.

Preformulation
Flow properties
The values obtained are reported in Table No.3. The powder flow properties of Carica papaya aqueous extract were studied to evaluate compressibility of the drug, since it has to be formulated as tablet. The results obtained are bulk density 0.588 mg/ml and tapped density was 0.800 mg/ml and Hausner’s ratio 1.36. The results showed that the compressibility of the formulation was 26.5% which indicate that the drug has poor flow properties.

Particle Size Analysis
According to USP32 By the above results it was observed that the 81.5% of particles are retained on the #140 mesh which have 106µm aperture size and 83.60% of particles are passed through the #100 mesh which have 150µm aperture size. Therefore it was concluded that major amount of particles have its size range of 150 µm to 106 µm.

Discussion
In the present study an attempt has been to formulate and evaluate Carica papaya chewable tablets by direct compression method, pharmaceutically acceptable easily available inert excipients were used for the preparation of Carica papaya chewable tablets. The prepared formulation was subjected to both pre and post formulation studies. The drug sample showed similar results as reported.

Solubility
Solubility of drug is important factor affecting its release from drug delivery system. Hence solubility analysis of Carica papaya chewable tablets was done. The solubility of the formulation was determined and found to be freely soluble in water.

UV spectroscopic analytical method
Standard curve of Carica papaya chewable tablets as shown in Table No.2 wavelength of maximum absorption was found to be 238nm. The Carica papaya chewable tablets obeyed the Beer’s-Lambert law in concentration range of 2-10µg/ml at this wavelength. This is well correlated with the reported value (238nm).

The tablets are prepared by direct compression method
The powder blend were evaluated for various flow properties. The powder blend showed poor flow properties evident from the results shown in Table No.3. The angle of repose values were ranged from 32.06.the results were found to be above 30; hence they have poor flow ability. The carr’s index ranged from 13.8 and hausner’s ratio value ranged from 1.43 hence they have poor flow and poor flow ability.

PHYSICAL CHARACTERIZATION OF CARICA PAPAYA CHEWABLE TABLETS
Tablet thicknesses, hardness, weight variation, friability of formulated tablets are presented.

Uniformity of weight
All the prepared tablets of Carica papaya chewable tablets were evaluated for weight variation. The weight of all the tablets was found to be uniform with low values of standard deviation and within the prescribed IP limits of ±7.5%.
Hardness and friability
The hardness of the tablet formulation was found to be in the range of 4 to 5 kg/cm². The friability values were found to be in the range of 0.5-1%.

In-vitro dissolution study
In-vitro dissolution studies were performed in pH 7.4 buffer. In the dissolution studies the formulated tablet showing better drug release up to 6 hrs.

Stability Studies
Carica papaya aqueous extract chewable tablets were stored at room temperature and refrigerated temperature for 3 months. At the temperature of 4ºC ± 2ºC, there was no significant change in physical and chemical properties of formulated tablets. There was a change in physical properties of tablets at 25ºC ± 2ºC after 1 month. Thus, it can be stated that tablets showed good storage stability at 4ºC ± 2ºC.

Table No.1: Composition of chewable tablets

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>Amounts (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carica papaya aqueous extract(API)</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>Di basic calcium calcium phosphate(Dry binder and filler)</td>
<td>149</td>
</tr>
<tr>
<td>3</td>
<td>Sucrose(sweetening agent)</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Magnesium Stearate(lubricant)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Talc (glidant)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Vanilla powder(flavouring agent)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table No.2: Standard calibration curve for Carica papaya aqueous extract

<table>
<thead>
<tr>
<th>S.No</th>
<th>Concentration in µg/ml</th>
<th>Absorbance at 238nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.51</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0.67</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table No.3: Flow properties of powder blend

<table>
<thead>
<tr>
<th>S.No</th>
<th>Wt (g)</th>
<th>V₀ (ml)</th>
<th>V (ml)</th>
<th>Bulk density (g/ml)</th>
<th>Tapped density (g/ml)</th>
<th>Compressibility index</th>
<th>Hausner’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>34</td>
<td>25</td>
<td>0.588</td>
<td>0.800</td>
<td>26.5%</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table No.4: Particle size analysis of Carica papaya aqueous extract

<table>
<thead>
<tr>
<th>S.No</th>
<th>Mesh No</th>
<th>Pore size*</th>
<th>W₀</th>
<th>W₁</th>
<th>W₁ - W₀</th>
<th>% Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#60</td>
<td>250 µm</td>
<td>345</td>
<td>345</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>#80</td>
<td>180 µm</td>
<td>348.7</td>
<td>350.85</td>
<td>2.15</td>
<td>4.30%</td>
</tr>
<tr>
<td>3</td>
<td>#100</td>
<td>150 µm</td>
<td>335.8</td>
<td>344.9</td>
<td>4.55</td>
<td>9.10%</td>
</tr>
<tr>
<td>4</td>
<td>#140</td>
<td>106 µm</td>
<td>368.8</td>
<td>409.55</td>
<td>40.75</td>
<td>81.50%</td>
</tr>
<tr>
<td>5</td>
<td>#200</td>
<td>75 µm</td>
<td>329.5</td>
<td>331.35</td>
<td>1.85</td>
<td>3.70%</td>
</tr>
<tr>
<td>6</td>
<td>Blank</td>
<td>-</td>
<td>518.3</td>
<td>519</td>
<td>0.7</td>
<td>1.40%</td>
</tr>
</tbody>
</table>
Evaluations of *Carica Papaya* Aqueous Extract Chewable Tablets by Direct Compression Method

Physical evaluation of tablets

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weight (mg)</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>Colour</td>
<td>Pale green</td>
</tr>
<tr>
<td>3</td>
<td>Surface</td>
<td>Smooth</td>
</tr>
<tr>
<td>4</td>
<td>Thickness (mm)</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>Hardness (Kp)</td>
<td>4 kg/cm²</td>
</tr>
<tr>
<td>6</td>
<td>% weight variation</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>Friability (%)</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Pre compression parameters

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bulk Density</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Tapped Density</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>Angle of repose</td>
<td>32.06</td>
</tr>
<tr>
<td>4</td>
<td>Carr’s index</td>
<td>13.8</td>
</tr>
<tr>
<td>5</td>
<td>Hauser’s Ratio</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Dissolution profiles of chewable tablets

<table>
<thead>
<tr>
<th>S.No</th>
<th>Time in min</th>
<th>% CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>34.2</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>49.6</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>62.5</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>74.4</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>86.3</td>
</tr>
</tbody>
</table>

Figure No.1: Image of papaya leaves
Figure No.2: Image of *Carica papaya* dried leaves powder

![Image](image1.png)

Figure No.3: UV-Visible spectra of *C. papaya* Aqueous Extract

![UV-Visible spectra](image2.png)

Figure No.4: Calibration curve for *Carica papaya* aqueous extract

![Calibration curve](image3.png)

Figure No.5: *In-vitro* drug release of *Carica papaya* aqueous extract

![Drug release](image4.png)
CONCLUSION
In the present research work, an attempt was made to formulate chewable tablets of *Carica papaya* aqueous extract by direct compression method. *Carica papaya* aqueous extract was formulated as chewable tablets. Drug-excipient compatibility was confirmed by FT-IR studies. Pre compression studies showed fair flow ability and complied the pharmacopeial requirement for tablet properties. From the in vitro drug release profile studies, tablet shows immediate drug release due to the direct compression and release was found to be uniform and showed more than 80% drug release over a period of 60 min. Hence, formulation and development of *Carica papaya* aqueous extract as chewable tablet can be further exploited and investigated for its activity against symptoms of dengue fever.

ACKNOWLEDGEMENT
The authors are sincerely thanks to the Department of Pharmaceutics, Joginpally BR Pharmacy College, Chevella Road, Hyderabad, Telangana-500075, India for providing the facilities to complete this research work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBILIOGRAPHY
13. Mojica-Henshaw M P, Francisco A D, De Guzman F and Tingo X T. Possible Immunomudulatory actions of *Carica papaya*...

Please cite this article in press as: Lakshmi Devi G et al. Formulation and evaluation of *Carica papaya* leaves aqueous extract chewable tablets, *Asian Journal of Research in Chemistry and Pharmaceutical Sciences*, 7(2), 2019, 528-536.